SVDD-Based Pattern Denoising

نویسندگان

  • Jooyoung Park
  • Daesung Kang
  • Jongho Kim
  • James T. Kwok
  • Ivor W. Tsang
چکیده

The support vector data description (SVDD) is one of the best-known one-class support vector learning methods, in which one tries the strategy of using balls defined on the feature space in order to distinguish a set of normal data from all other possible abnormal objects. The major concern of this letter is to extend the main idea of SVDD to pattern denoising. Combining the geodesic projection to the spherical decision boundary resulting from the SVDD, together with solving the preimage problem, we propose a new method for pattern denoising. We first solve SVDD for the training data and then for each noisy test pattern, obtain its denoised feature by moving its feature vector along the geodesic on the manifold to the nearest decision boundary of the SVDD ball. Finally we find the location of the denoised pattern by obtaining the pre-image of the denoised feature. The applicability of the proposed method is illustrated by a number of toy and real-world data sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Smoothly approximated support vector domain description

Support vector domain description (SVDD) is a well-known tool for pattern analysis when only positive examples are reliable. The SVDD model is often fitted by solving a quadratic programming problem, which is time consuming. This paper attempts to fit SVDD in the primal form directly. However, the primal objective function of SVDD is not differentiable which prevents the well-behaved gradient b...

متن کامل

Customer Credit Scoring Method Based on the SVDD Classification Model with Imbalanced Dataset

Customer credit scoring is a typical class of pattern classification problem with imbalanced dataset. A new customer credit scoring method based on the support vector domain description (SVDD) classification model was proposed in this paper. Main techniques of customer credit scoring were reviewed. The SVDD model with imbalanced dataset was analyzed and the predication method of customer credit...

متن کامل

A support vector data description approach to target detection in hyperspectral imagery

Spectral variability remains a challenging problem for target detection and classification in hyperspectral imagery (HSI). In this paper, we have applied the nonlinear support vector data description (SVDD) to perform full-pixel target detection. Using a pure target signature, we have developed a novel pattern recognition (PR) algorithm to train an SVDD to characterize the target class. We have...

متن کامل

A COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM

This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...

متن کامل

Sampling Method for Fast Training of Support Vector Data Description

Support Vector Data Description (SVDD) is a machine learning technique used for single class classification and outlier detection. The SVDD model for normal data description builds a minimum radius hypersphere around the training data. A flexible description can be obtained by use of Kernel functions. The data description is defined by the support vectors obtained by solving quadratic optimizat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural computation

دوره 19 7  شماره 

صفحات  -

تاریخ انتشار 2007